翻訳と辞書
Words near each other
・ Károly Újfalvy von Mezőkövesd
・ Károlyháza
・ Károlyi
・ Kárpáti
・ Kártyázó asszonyok
・ Kárász
・ Kásád
・ Kátai Tamás
・ Káthirunda Kangal
・ Kátia
・ Kátia Abreu
・ Kátia Lopes
・ Kátia Lund
・ Kátia Regina Santos
・ Kári Árnason
Kármán line
・ Kármán vortex street
・ Kármán–Howarth equation
・ Károli Gáspár University of the Reformed Church in Hungary
・ Károly
・ Károly Aggházy
・ Károly Alexy
・ Károly Andrássy
・ Károly Antal
・ Károly Bajkó
・ Károly Bakos
・ Károly Balzsay
・ Károly Bartha
・ Károly Bartha (Minister of Defence)
・ Károly Bartha (swimmer)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kármán line : ウィキペディア英語版
Kármán line

The Kármán line, or Karman line, lies at an altitude of above the Earth's sea level, and commonly represents the boundary between the Earth's atmosphere and outer space. This definition is accepted by the Fédération Aéronautique Internationale (FAI), which is an international standard-setting and record-keeping body for aeronautics and astronautics.
The line is named after Theodore von Kármán (1881–1963), a Hungarian-American engineer and physicist. He was active primarily in aeronautics and astronautics. He was the first to calculate that around this altitude, the atmosphere becomes too thin to support aeronautical flight, because a vehicle at this altitude would have to travel faster than orbital velocity to derive sufficient aerodynamic lift to support itself (neglecting centrifugal force). There is an abrupt increase in atmospheric temperature and interaction with solar radiation just below the line, which places the line within the greater thermosphere.
==Definition==
An atmosphere does not abruptly end at any given height, but becomes progressively thinner with altitude. Also, depending on how the various layers that make up the space around the Earth are defined (and depending on whether these layers are considered part of the actual atmosphere), the definition of the edge of space could vary considerably: If one were to consider the thermosphere and exosphere part of the atmosphere and not of space, one might have to extend the boundary to space to at least above sea level. The Kármán line thus is an arbitrary definition based on the following considerations:
An aircraft only stays aloft if it constantly travels forward relative to the air (airspeed is not dependent on speed relative to ground), so that the wings can generate lift. The thinner the air, the faster the plane must go to generate enough lift to stay up.
The amount of lift required at any given point can be calculated by the lift equation:
:
L = \tfrac12\rho v^2 S C_L

where
:L is the lift force
:ρ is the air density
:v is the aircraft's speed relative to the air
:S is the aircraft's wing area,
:CL is the lift coefficient.〔("The Lift Coefficient" ). Glenn Research Center. NASA. Retrieved May 1, 2015.〕
Lift (L) generated is directly proportional to the air density (ρ). All other factors remaining unchanged, true airspeed (v) must increase to compensate for less air density (ρ) at higher altitudes.
An orbiting spacecraft only stays in the sky if the centrifugal component of its movement around the Earth is enough to balance the downward pull of gravity. If it goes slower, the pull of gravity gradually makes its altitude decrease. The required speed is called ''orbital velocity,'' and it varies with the height of the orbit. For the International Space Station, or a space shuttle in low Earth orbit, the orbital velocity is about 27,000 km per hour (17,000 miles per hour).
For an airplane flying higher and higher, the increasingly thin air provides less and less lift, requiring increasingly higher speed to create enough lift to hold the airplane up. It eventually reaches an altitude where it must fly so fast to generate lift that it reaches orbital velocity. The Kármán line is the altitude where the speed necessary to aerodynamically support the airplane's full weight equals orbital velocity (assuming wing loading of a typical airplane). In practice, supporting full weight wouldn't be necessary to maintain altitude because the curvature of the Earth adds centrifugal lift as the airplane reaches orbital speed. However, the Karman line definition ignores this effect because orbital velocity is implicitly sufficient to maintain any altitude regardless of atmospheric density. The Karman line is therefore the highest altitude at which orbital speed provides sufficient aerodynamic lift to fly in a straight line that doesn't follow the curvature of the Earth's surface.
When studying aeronautics and astronautics in the 1950s, Kármán calculated that above an altitude of roughly , a vehicle would have to fly faster than orbital velocity to derive sufficient aerodynamic lift from the atmosphere to support itself. At this altitude, the air density is about 1/2200000 the density on the surface. At the Karman line, the air density ρ is such that
:
L = \tfrac12\rho v_0^2 S C_L = mg


where
:v0 is the speed of a circular orbit at the same altitude in vacuum
:m is the mass of the aircraft
:g is the acceleration due to gravity.
Although the calculated altitude was not exactly 100 km, Kármán proposed that 100 km be the designated boundary to space, because the round number is more memorable, and the calculated altitude varies minutely as certain parameters are varied. An international committee recommended the 100 km line to the FAI, and upon adoption, it became widely accepted as the boundary to space for many purposes. However, there is still no international legal definition of the demarcation between a country's air space and outer space.〔(''International Law: A Dictionary'' ), by Boleslaw Adam Boczek; Scarecrow Press, 2005; page 239: "The issue whether it is possible or useful to establish a legal boundary between airspace and outer space has been debated in the doctrine for quite a long time. . . . no agreement exists on a fixed airspace - outer space boundary . . ."〕
Another hurdle to strictly defining the boundary to space is the dynamic nature of Earth's atmosphere. For example, at an altitude of , the atmosphere's density can vary by a factor of five, depending on the time of day, time of year, AP magnetic index, and recent solar flux.
The FAI uses the Kármán line to define the boundary between aeronautics and astronautics:〔(PDF on the FAI website )〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kármán line」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.